
SPRY UUCode Help Contents    
The following Help Topics are available:
Introduction
Program Operation
Procedures
Keyboard
System Requirements and Usage
General Operating Information
Encoding Header Formats

UUCode Menu Commands

For Help using Help, press [F1]. Help revised May, 95.



Introduction
When to Use UUCode
UU and XX Encoding & Decoding



When to Use UUCode
Whenever you need to send binary data over communication links or networks, such as the 
Internet, which cannot handle 8-bit data, then UUCode provides you a solution.    Binary data 
is used in file types with extensions of .EXE, .COM, ZIP, .ARC, .LZH, .ZOO, and many others.
UUCode will also allow sending of binary data files between popular on-line services such as 
AT&T Mail, America On-Line, CompuServe, Delphi, GEnie, MCI mail, and educational and 
other sites on the Internet.
Another popular use for UUCode is on Usenet, the "Bulletin Board System (BBS) of the 
Internet." Again, the reason is to allow binary data to be posted as part of news articles.



UU and XX Encoding & Decoding
UUCode uses a method called UU or XX encoding and decoding to convert the 8-bit binary 
data into a form usable by communications links or networks which cannot transport such 
data. This method generates (encodes) four ASCII characters from every three binary 
characters, which is basically converting 6 bits of binary information into the appropriate 6 
bits within a 7-bit ASCII character. This guarantees that only ASCII text is sent when the 
encoded output is sent over computer communication links or networks. Similarly, the 
decoding process converts four ASCII characters into three binary characters. The penalty of 
this approach is that the encoded file is 33% larger than the original file, but that's better 
than not being able to transfer binary data at all!
XX encoding is similar, but uses a different character set than UU encoding so that character
set translations will work better across multiple types of systems, i.e. between EBCDIC (IBM 
mainframe) and ASCII on UNIX.
Now you can handle these encoded files on a Windows 3.0/3.1 equipped PC such that UU or 
XX encoding and decoding is possible between two PCs or between your PC and any other 
computer system, such as a UNIX system or Macintosh.    UUCode can do both encoding and 
decoding, and is fully compatible with the standard "uuencode" and "uudecode" programs 
found on UNIX or other computer systems.



Optional File Type Association
If you want to run UUCode from FILE MANAGER and take advantage of the Command Line 
Mode, you can cause UUCode to automatically be invoked when you want to decode a file.   
Files to be decoded are identified by either a ".UUE" or ".XXE" extension.
Encoding a file is also possible if you want to associate other file types having extensions 
different than ".UUE" or ".XXE".    Usually this is not the case because you may want to run 
another program on such files, such as a word processor or archive program.    The better 
way to do this is to use Drag-and-Drop Mode.    If you do want to associate files to encode 
with UUCode from FILE MANAGER, then follow steps 3 and 4 below using the appropriate file 
extension.
If you are running Windows 3.1, you need do nothing extra to take advantage of Drag-and-
Drop Mode.
To associate files for decoding with UUCode, follow the steps shown below.

Step 1. Run the FILE MANAGER.
Step 2. FILE MANAGER requires a file with the appropriate extension to exist so that 

associations can be made.    Copy your AUTOEXEC.BAT or any other file to a file 
called Z.UUE.

Step 3. Highlight the Z.UUE file. (do not double click or press Enter to run it).
Step 4. From the top menu choose, File|Associate.    When the Associate dialog box 

pops up, type the full path name of where UUCODE.EXE is located.    Then press
Enter or click OK.    This completes the association.    You may now delete the 
Z.UUE file.

Step 5. Repeat steps 2 through 4 with a file called Z.XXE.
FILE MANAGER will now automatically run the decoding or encoding portion of UUCode when 
the files with that extension are double-clicked from FILE MANAGER.



Program Operation
UUCode has three modes of operation; interactive mode, command line mode, and drag-
and-drop mode.    Interactive Mode is automatically used when a file argument is not 
specified on the command line when starting UUCode.    Command Line Mode is 
automatically used whenever any file argument is specified on the command line.    Drag-
and-Drop Mode, not available with Windows 3.0, is used when files are "dropped" on 
UUCode from FILE MANAGER.    Since each mode operates differently, each mode is 
described separately.
Interactive Mode
Command Line Mode
Drag-and-Drop Mode



Interactive Mode
All operation of UUCode in interactive mode is done via the menu or associated hot keys.
Interactive mode is most useful when several files will be encoded or decoded.    In addition, 
while in interactive mode, unlike Command Line Mode, UUCode will prompt the user 
before the following actions are done:

A. Prompt for a file to be encoded or decoded.
B. After choosing the encoding or decoding operation, a suggested file name for 

output is shown.    The user is allowed to modify the output file name, unless 
Use Default File Names is enabled.

C. If a file to be output already exists, UUCode will ask permission before 
overwriting it, unless Overwrite Existing Files without Asking is enabled.



Command Line Mode
All operation of UUCode in command line mode is done via the File|Run command of either 
PROGRAM MANAGER or FILE MANAGER or when you double-click a file in FILE MANAGER and you 
have previously set up your Optional File Type Association.    Command line mode is 
most useful when one file will be encoded or decoded.    Unlike Interactive Mode, UUCode 
will never prompt the user before performing an action.
UUCode will allow multiple files on the command line.    Each file name must be separated by
one or more spaces from the other names on the command line.
Command Line Arguments
Operation Based on Input File Name



Command Line Arguments
UUCode supports one command line argument: /J or -J, which permits the user to Decode 
Multiple Input Files as 1. When this option is used, all input files specified on the 
command line are treated as one large input file.



Operation Based on Input File Name
In command line mode, the choice of performing a encode or decode operation can be 
determined by the extension of the file name supplied on the command line, if the Decode 
Method is optioned to do so. Files with an extension of ".UUE" will be run through the UU 
decoding process. Files with an extension of ".XXE" will be run through the XX decoding 
process. Files with any extension other than ".UUE" or ".XXE" will be run through the 
encoding process.
You can also force UU or XX decoding as described in Decode Method.



Drag-and-Drop Mode
Drag-and-Drop mode can be started in the same way as Interactive Mode; by first running 
UUCode without any file argument.    Drag-and-Drop mode is then entered when files are 
dropped on UUCode via FILE MANAGER.    Drag-and-Drop mode can also be started by 
dropping files on the UUCODE.EXE file in a FILE MANAGER window when UUCode is not yet 
running.    In that case, FILE MANAGER will automatically start running UUCode and drop the 
selected files on it.
UUCode supports dropping of one or many files.    If multiple files are dropped, they will be 
operated on one at a time until all files have been processed.    Each file is treated 
independently, unless Decode Multiple Input Files as 1 is enabled.    Therefore, you may 
encode or decode files as determined by their file name.    To determine how the dropped file
name affects the operation selected by UUCode, see the Operation Based on Input File 
Name section.
Drag-and-Drop mode operates in the same way as Interactive Mode.    Program operation 
and errors are reported as they occur and user confirmation of activity may be required, 
depending on the configuration settings.



Procedures
Encoding a File
Decoding a File



Encoding a File
Encoding a file allows you to convert a file containing 8-bit binary data into a 7-bit ASCII 
encoded readable form.    The following steps apply to Interactive Mode or Drag-and-
Drop Mode. In Command Line Mode, files with extensions other than ".UUE" or ".XXE" are
automatically encoded without additional user prompting.
Entry. In Interactive Mode, selecting the File|Encode menu item enters the encoding process.

Step 1. A dialog box will appear showing all files in the directory.

Step 2. You will first be prompted to select a file to encode.    Pick the file name and then click the OK 
button or press Enter.    An output file name will be suggested with the default file extension of 
".UUE" for UU encoding or ".XXE" for XX encoding.    You may change it if you wish, unless Use 
Default File Names is enabled.

Step 3. The encoding process is started by clicking the "OK" button (or pressing Enter).    If the output 
file already exists, UUCode will ask if you want to overwrite it, unless Overwrite Existing 
Files without Asking is enabled.    You will notice a % complete bar being updated as UUCode
encodes the input file.

Step 4. At any time during the encoding process, you may click the "Cancel" button with the mouse or 
ALT-C and be returned to the main menu, ready for another command. If you cancel the 
encoding operation, no encoded output file will be generated.    When encoding is complete, 
you will see a dialog box indicating success (or failure).



Decoding a File
Decoding a file allows you to convert a file containing a 7-bit ASCII encoded data into its 
original 8-bit binary data form.    The following steps apply to Interactive Mode or Drag-
and-Drop Mode. In Command Line Mode, files with the extension of ".UUE" or ".XXE" are 
automatically decoded without additional user prompting.
Entry. In Interactive Mode, selecting the File|Decode menu item enters the decoding process.

Step 1. A dialog box will appear showing all ".UUE" and ".XXE" files in the directory.

Step 2. You will first be prompted to select a file to decode, using the default extensions of ".UUE" and 
".XXE".    Pick the file name and then click the OK button or hit Enter.    UUCode will read the 
encoded file to determine the name of the output file. You will be prompted with the output file 
name, which you can change if you wish, unless Use Default File Names is enabled.

Step 3. The decoding process is started by clicking the "OK" button.    UUCode will check if the output 
file already exists. If it does, you will be asked if you want to overwrite it, unless Overwrite 
Existing Files without Asking is enabled.    You will then notice a % complete bar being 
updated as UUCode decodes the input file.

Step 4. At any time during this process, you may click the "Cancel" button using the mouse or ALT-C 
and be returned to the main menu, ready for another command. If you cancel the decoding 
operation, no decoded output file will be generated.    When decoding is complete, you will see 
a dialog box indicating success (or failure).

What if Decoding Fails?



What if Decoding Fails?
When UUCode cannot complete decoding successfully due to its inability to properly 
determine a multipart format, it will display a dialog box explaining the problem.    The user 
may then retry decoding with either a specific format or try to decode using all formats 
supported. If decoding still fails after trying all supported formats, see What if the Multiple
Part UU Format I Use Isn't Supported? for suggestions in dealing with this situation.



Menu Commands
The following topics explain the menu system of UUCode.
File Menu
Configure Menu



File Menu
The file menu allow you to encode or decode files, or exit the program.
Encode Menu Item
Decode Menu Item
Exit Menu Item



Encode Menu Item
Selecting Encode will cause UUCode to begin the process of encoding a binary file (any file 
type actually) into a encoded ASCII file.    See the Encoding a File topic for details.



Decode Menu Item
Selecting Decode will cause UUCode to begin the process of decoding a previously encoded 
ASCII file into its binary (original) form.    See the Decoding a File topic for details.



Exit Menu Item
Selecting Exit will quit the UUCode program.
If UUCode is running while when exit is pressed, UUCode will first cancel the operation (as if 
the Cancel button were pressed) and clean up any temporary files used during the encoding 
or decoding process.    Therefore, it may take a few seconds before UUCode completely exits.



Configure Menu
You can configure UUCode various ways to operate according to your preferences.    There 
are configuration options for general file handling and window display, encoding, and 
decoding operations.
General Configuration
Encoding Configuration
Decoding Configuration



General Configuration
This dialog allows you to configure general UUCode options.
In this configuration dialog box, there are both "Configure" and "Save" buttons. If you choose
"Configure," all configuration options chosen will be used for the remainder of the time 
UUCode is operation (unless you re-configure UUCode again). The next time UUCode is run, 
the configuration options will be set to the previous defaults. If you choose "Save," then all 
configuration options will be put into effect and saved as the defaults which will be active 
the next time UUCode is run. These defaults are placed in a local file called UUCODE.INI.
Become ICON When En/Decoding
Stay ICON When En/Decoding
Exit When Done En/Decoding
Overwrite Existing Files without Asking
Use Default File Names
No Status Messages



Become ICON When En/Decoding
Setting this option applies only when UUCode is run in Interactive Mode.
Enable this option if you want UUCode to run as an ICON while encoding or decoding files.    
UUCode will automatically restore to its previous size when the operation is completed.



Stay ICON When En/Decoding
Setting this option applies only when UUCode is run in Interactive Mode.
Enable this option if you want UUCode to remain an ICON after encoding or decoding files.
The default is that UUCode will automatically restore to its previous size when the operation 
is completed.



Exit When Done En/Decoding
Setting this option applies only when UUCode is run in Interactive Mode.    This option is 
automatically enabled when UUCode is run in Command Line Mode.
Enable this option if you want UUCode to automatically exit after encoding or decoding files.
The default is that UUCode will remain an active application after the operation is 
completed.



Overwrite Existing Files without Asking
Setting this option applies only when UUCode is run in Interactive Mode or Drag-and-
Drop Mode. This option is automatically enabled when Command Line Mode is used or 
when Multi Part Encoding is selected.
Enable this option if you want UUCode to automatically overwrite any existing output files.
In Interactive Mode, the default is to ask user permission before any previously existing 
output files are overwritten.



Use Default File Names
Setting this option applies only when UUCode is run in Interactive Mode or Drag-and-
Drop Mode.    This option is automatically enabled when Command Line Mode is used or 
when Multi Part Encoding is selected.
Enable this option if you want UUCode to automatically choose the output file name for you.  
The output file name is either the result of encoding a file or the file name as specified in the
encoded file when decoding is used.
For encoding and a single file output, the default file name is the input file name with the 
extension replaced with ".UUE" for UU encoding or ".XXE" for XX encoding.    For example, 
the default file name for encoding ANYFILE.EXE is ANYFILE.UUE.
For Multi Part Encoding output, the output name of each file part is determined 
automatically.    The output file names consist of the first six (6) characters of the input file 
name or the entire input file name, whichever length is less, with a 1 or 2 digit part number 
(1 to 99) concatenated, and having an extension of ".UUE" or ".XXE".    For example, if an 
encoded output file required four (4) parts and the input file name was MYARCHIV.ZIP, the 
output parts would be named MYARCH1.XXE, MYARCH2.XXE, MYARCH3.XXE, and MYARCH4.XXE.   
Similarly, if a file to be encoded was named ABC.EXE, then the four output parts would be 
ABC1.UUE, ABC2.UUE, ABC3.UUE, and ABC4.UUE.
For decoding, the default file name is that which is specified in the encoded input file.    For 
example, if the file being decoded is named FILE.UUE and contains the file ABC.ZIP, then 
the default file name is ABC.ZIP.
The default is to ask user permission to use the proposed output file name.    This allows the 
user to manually change the proposed name if desired.



No Status Messages
Setting this option applies only when UUCode is run in Interactive Mode or Drag-and-
Drop Mode.    This option is automatically enabled when UUCode is run in Command Line 
Mode.
Enable this option if you want UUCode to run without requiring user confirmation of success 
or failure of operations when they are completed.



Encoding Configuration
This dialog allows you to configure options for UUencoding.
In this configuration dialog box, there are both "Configure" and "Save" buttons. If you choose
"Configure," all configuration options chosen will be used for the remainder of the time 
UUCode is operation (unless you re-configure UUCode again). The next time UUCode is run, 
the configuration options will be set to the previous defaults. If you choose "Save," then all 
configuration options will be put into effect and saved as the defaults which will be active 
the next time UUCode is run. These defaults are placed in a local file called UUCODE.INI.
Multi Part Encoding
Encode Method
End of Line String
Max Encoded File Size
Generate Checksums on Encoded Output



Multi Part Encoding
UUCode supports 12 formats for single or multi part encoding. These are:

- Single file
- SIMTEL multiple part format
- Comp.binaries multiple part format
- Four of the most common multiple part formats used in Alt.binaries Usenet 

newsgroups
- UNIX shell archive multiple part format
- DOS UUENCODE/UUDECODE multiple part format
- X-File header style format
- UUXFER multiple part format
- WINCODE multiple part format

Select the format required from the list shown.
All but the single file format are considered multiple part formats.



Encode Method
UUCode supports encoding using either the UU or XX character set. XX encoding uses a 
different character set which allows for EBCDIC to ASCII conversions. The most popular 
method, however, is UU encoding. Select UU for UU encoding or XX for XX encoding.



End of Line String
Since UUCode encoded output may be transferred to either PC or UNIX systems, an option is
provided to allow an end-of-line (EOL) terminator string specific to the destination computer 
type. DOS uses a carriage return (CR) followed by a line feed (LF), while UNIX uses only a LF. 
Select DOS/Windows for the CR/LF end-of-line or UNIX for LF end-of-line terminator.



Max Encoded File Size
When encoding using any of the multiple part formats, the maximum output file size 
parameter limits the maximum number of characters per part to the value specified.    The 
range for this size is 4500 to 1,048,576 (1M) bytes.    The default is 60,000 bytes, which is 
somewhat less than a typical e-mail program limit of 64K (65,536) bytes. Note that the 
output file(s) may be slightly larger or smaller that this number due to the variable header 
and trailer data required for the multiple part formats.
The number of output parts is automatically calculated from the input file size and the 
maximum output file size.    There is a ninety-nine (99) part maximum.
When the single file option is chosen, the encoded output file is in one piece, regardless of 
size.    Therefore the maximum output file size field has no effect with this option (and is 
grayed to so indicate).
See the Use Default File Names section for information on how the output files are 
named.



Generate Checksums on Encoded Output
To assist in detecting errors introduced by the transport network carrying UU or XX encoded 
files, a checksum can be placed in each encoded output file. Decoding programs capable of 
detecting these checksums, such as UUCode, can indicate whether the encoded input 
appears corrupted. 
UUCode uses the same checksum algorithm as the UNIX "sum -r" command. Each part, 
whether single or multiple parts are output, has appended at the end of the part a checksum
line containing the checksum data for that part as well as it's encoded size in bytes. 
Additionally, the last part also has appended checksum data for the original input file and 
input file size so that the decoded output can be checked against the original input file that 
was encoded.
Enable this option to automatically generate the appropriate checksum data. Please note 
that the UNIX shell archive format does not support the checksum data option.



Decoding Configuration
This dialog allows you to configure UUCode options for uudecoding.
In this configuration dialog box, there are both "Configure" and "Save" buttons. If you choose
"Configure," all configuration options chosen will be used for the remainder of the time 
UUCode is operation (unless you re-configure UUCode again). The next time UUCode is run, 
the configuration options will be set to the previous defaults. If you choose "Save," then all 
configuration options will be put into effect and saved as the defaults which will be active 
the next time UUCode is run. These defaults are placed in a local file called UUCODE.INI.
Automatic Detection of Decoding Type
Decoding Type
Decode Method
Decode Multiple Input Files as 1
Test Checksum Data if Present



Automatic Detection of Decoding Type
When decoding, the default is to automatically detect the file format used and decode as 
required. Due to the prolific number of formats, for which there is unfortunately no standard 
- defacto or otherwise, it is possible that UUCode can be confused by an unsupported 
format. To assist in decoding, a specific Decoding Type format can be requested.



Decoding Type
When Automatic Detection of Decoding Type is disabled, the specific format to look for 
is chosen via a list of radio buttons.



Decode Method
UUCode supports decoding using either the UU or XX character set. Normally, UUCode 
determines UU or XX decoding Operation Based on Input File Name. If a specific 
decoding method is required, select UU for UU encoding or XX for XX encoding. This will 
force the particular decoding method regardless of the input file name.



Decode Multiple Input Files as 1
Normally, all parts of an encoded file are present in a single file to decode. If the encoded 
input is spread across multiple files, enabling this option will cause all input files to treated 
as one large input file which UUCode can then decode. This option allows decoding of a 
single input file split across any number of encoded files with the parts in any order. This 
option is also available from the command line as explained in Command Line 
Arguments.



Test Checksum Data if Present
UUCode will automatically determine if any file checksum data is present to help detect 
possible errors introduced during transport across a network. If such checksum data is 
present, UUCode will test that data against it's own calculation and report if any mismatches
occur. UUCode does not abort decoding if mismatches are found, but rather warns that a 
potential problem with the decoded file exists.



Keyboard
The following hot keys are defined for UUCode.

Hot Key Command/Procedure
F1 Access on-line help file
Shift-F1 Display the About dialog box
F2 Encoding a File
F3 Decoding a File
F5 General Configuration of UUCode for its file handling and window display 

characteristics of operation
F6 Encoding Configuration of UUCode for the UU or XX encode operation
F7 Decoding Configuration of UUCode for the UU or XX decode operation
F10 Exit UUCode



System Requirements and Usage
CPU Instruction Set
Windows Operating Modes
Disk Usage
Memory Usage



CPU Instruction Set
UUCode was written for Windows 3.0/3.1 equipped PCs using the 80286 instruction set and 
will only work on PCs using 80286, 80386, 80386SX, 80486, 80486DX, 80486DX2, 80486SX, 
and Pentium or compatible processors.



Windows Operating Modes
UUCode runs only in Windows standard or enhanced modes; not in real mode.    This is the 
same as Windows 3.1.



Disk Usage
UUCode uses approximately 250K of disk space if you are running Windows 3.1 and an 
additional 140K if you are running Windows 3.0.    The exact amount depends on your disk's 
cluster size. If you don't know about your cluster size, don't worry about it.



Memory Usage
While running, UUCode uses about 60K of memory.



General Operating Information
DOS and UNIX End Of Line (EOL) Characters
Cooperative Multitasking
Temporary File Usage
Multiple Instances and File Sharing
File Permissions
Encoding Character for Binary Zero
Multipart File Limitations



DOS and UNIX End Of Line (EOL) Characters
For decoding, UUCode automatically handles any combination of DOS and UNIX end-of-line 
terminators; those with both Carriage Return (CR) and Line Feed (LF), or just CR or just LF. 
There is no need to pre-process encoded input to convert the UNIX format to DOS.
When generating encoded files, UUCode can be configured to use either a DOS or UNIX End 
of Line String.



Cooperative Multitasking
UUCode is a cooperative program with the other applications running under Windows such 
that it shares the CPU during the encoding and decoding processes which use extensive file 
I/O. This results in slightly slower performance than if no CPU sharing were done.    Even so, it
is not recommended that modem communications take place while UUCode is running; file 
transfers might fail.



Temporary File Usage
To allow multiple part decoding with the file parts in any order, UUCode creates temporary 
files.    This means that the disk on which UUCode is operating must be writable and have 
sufficient free space of twice the size of the input file(s).



Multiple Instances and File Sharing
UUCode allows multiple instances of itself.    Since Windows 3.0/3.1 is a multi-tasking system,
it is possible that the same encoded or decoded file might be used by UUCode or other 
applications at one time. This could happen if the user chooses the same file name twice by 
mistake. To solve this problem, UUCode takes advantage of Windows file locking mechanism 
and does not allow any other application to write the UUCode output file as it is being 
created. However, multiple read accesses to the input files are allowed.



File Permissions
When decoding a file, the permissions identified in the encoded file are ignored.    The output
file is always created with read and write permissions for all, which is what DOS can support.
To be consistent with the UNIX versions of encoding, the file permission data are set to 
owner read/write, with read-only permission for group and other (file mode "644").



Encoding Character for Binary Zero
Although the UU encoding specification allows either an ASCII space (hex character 20) or a 
ASCII back-quote (` - hex character 60), UUCode will always UU encode its binary zero (0) 
output using the back-quote (`) character.    This allows for easier viewing of the UU encoded 
file.
For decoding, UUCode will accept input files with either the space or the back-quote 
character without problems.
XX encoding always uses the plus '+' character for binary 0.



Multipart File Limitations
For the decoding operation, UUCode allows the individual parts of a multiple part encoded 
binary file to exist in any order, e.g. not be restricted to sequential order.    However, all the 
parts of one encoded binary file must be present in one or more input files to be decoded.
In addition, no more than one binary file's worth of encoded data can be present in any set 
of encoded files.
In summary, the encoded file(s) must contain all the parts of one and only one binary file for 
the decoding operation.    In either case, UUCode will detect and report any violations of 
these requirements should they occur.



Encoding Header Formats
Ideally, only one header format would be required for UU or XX encoded files. However, the 
multiple part encoded formats were designed to allow a large file transfer by encoding one 
large binary file into multiple parts for transmission across a network.    This is necessary 
because the E-mail on many systems cannot handle more than 64K of data (or less) for any 
one file.    Today, large binary files are common which would prohibit sending them via E-mail
unless the multiple part format is used.    The multiple part formats supported by UUCode are
briefly described below.    In the examples, it is assumed that three parts are used and that 
they are in order (not a requirement for UUCode).
Single File Format
Internet's SIMTEL20 Archive Site Format
Usenet Newsgroup comp.binaries Format
Usenet Newsgroup alt.binaries Format 1
Usenet Newsgroup alt.binaries Format 2
Usenet Newsgroup alt.binaries Format 3
Usenet Newsgroup alt.binaries Format 4
UNIX Shell Archive Format
DOS uuencode/uudecode Program Format
X-File Format
UUXFER Program Format
WINCODE Program Format



Single File Format
begin 644 archive.zip
Encoded data goes here

end



Internet's SIMTEL20 Archive Site Format
------------ Part 1 of 3 ------------
begin 644 archive.zip
Encoded data goes here

-------- End of part 1 of 3 --------
------------ Part 2 of 3 ------------
Encoded data goes here

-------- End of part 2 of 3 --------
------------ Part 3 of 3 ------------
Encoded data goes here

end
-------- End of part 3 of 3 --------



Usenet Newsgroup comp.binaries Format
Archive-name: archive/part01
BEGIN--cut here--cut here--
begin 644 archive.zip
Encoded data goes here

END--cut here--cut here--
Archive-name: archive/part02
BEGIN--cut here--cut here--
Encoded data goes here

END--cut here--cut here--
Archive-name: archive/part03
BEGIN--cut here--cut here--
Encoded data goes here

end
END--cut here--cut here--



Usenet Newsgroup alt.binaries Format 1
NOTE: For the four following alt.binaries formats, UUCode will accept decoding "Subject:" 
lines with any of the following formats. For encoding, however, the output is exactly as 
shown in the examples below. 'X' identifies the current part number and 'Y' identifies the 
total number of parts.
The filename may have an extension (filename.ext), no extension (filename or description) 
or be preceded by a dash '-' (- filename.ext).
The parts count identifiers can be in any of the formats (X/Y), (partX/Y), (part X/Y), (part X of 
Y), [X/Y], [partX/Y], [part X/Y], or [part X of Y].
Subject: archive.zip (1/3)
e-mail header data goes here

BEGIN --- CUT HERE --- Cut Here --- cut here --- archive.zip
begin 644 archive.zip
Encoded data goes here

-- 
Subject: archive.zip (2/3)
e-mail header data goes here

BEGIN --- CUT HERE --- Cut Here --- cut here --- archive.zip
Encoded data goes here

-- 
Subject: archive.zip (3/3)
e-mail header data goes here

BEGIN --- CUT HERE --- Cut Here --- cut here --- archive.zip
Encoded data goes here

end
-- 



Usenet Newsgroup alt.binaries Format 2
Subject: archive.zip [part 1/3]
e-mail header data goes here

BEGIN------------------>  cut here  <------------------------
begin 644 archive.zip
Encoded data goes here

END-------------------->  cut here  <------------------------
Subject: archive.zip [part 2/3]
e-mail header data goes here

BEGIN------------------>  cut here  <------------------------
Encoded data goes here

END-------------------->  cut here  <------------------------
Subject: archive.zip [part 3/3]
e-mail header data goes here

BEGIN------------------>  cut here  <------------------------
Encoded data goes here

end
END-------------------->  cut here  <------------------------



Usenet Newsgroup alt.binaries Format 3
Subject: archive.zip [1/3]
NOTE: blank lines after e-mail header indicate start of encoded data

begin 644 archive.zip
Encoded data goes here

-- 
Subject: archive.zip [2/3]
NOTE: blank lines after e-mail header indicate start of encoded data

Encoded data goes here

-- 
Subject: archive.zip [3/3]
NOTE: blank lines after e-mail header indicate start of encoded data

Encoded data goes here

end
-- 



Usenet Newsgroup alt.binaries Format 4
Subject: archive.zip [1/3]
e-mail header data goes here

BEGIN----------------------CUT HERE--------------------------
begin 644 archive.zip
Encoded data goes here

END------------------------CUT HERE--------------------------
Subject: archive.zip [2/3]
e-mail header data goes here

BEGIN----------------------CUT HERE--------------------------
Encoded data goes here

END------------------------CUT HERE--------------------------
Subject: archive.zip [3/3]
e-mail header data goes here

BEGIN----------------------CUT HERE--------------------------
Encoded data goes here

end
END------------------------CUT HERE--------------------------



UNIX Shell Archive Format
#!/bin/sh
#
# This is a shell archive. Cut everything off before
# the #!/bin/sh and feed the rest to /bin/sh
#
part=1
file=archive.zip
sed -e '/^BEGIN/d' -e '/^END/d' << \End_of_Section > $file.uue.$part
BEGIN------------ archive.zip ------------ part 1/3 ---
begin 644 archive.zip
Encoded data goes here

END-------------- archive.zip ------------ part 1/3 ---
End_of_Section
echo $file, part $part extracted.
if [ `echo $file.uue.[0-9]* | wc -w` = 3 ]; then 
cat $file.uue.* | uudecode
if [ $? -gt 0 ]; then
  echo Error encountered when uudecoding pieces...
exit 1
fi
echo $file successfully uudecoded. Removing uuencoded pieces.
rm $file.uue.[0-9]*
fi
exit 
#!/bin/sh
#
# This is a shell archive. Cut everything off before
# the #!/bin/sh and feed the rest to /bin/sh
#
part=2
file=archive.zip
sed -e '/^BEGIN/d' -e '/^END/d' << \End_of_Section > $file.uue.$part
BEGIN------------ archive.zip ------------ part 2/3 ---
Encoded data goes here

END-------------- archive.zip ------------ part 2/3 ---



End_of_Section
echo $file, part $part extracted.
if [ `echo $file.uue.[0-9]* | wc -w` = 3 ]; then 
cat $file.uue.* | uudecode
if [ $? -gt 0 ]; then
  echo Error encountered when uudecoding pieces...
exit 1
fi
echo $file successfully uudecoded. Removing uuencoded pieces.
rm $file.uue.[0-9]*
fi
exit 
#!/bin/sh
#
# This is a shell archive. Cut everything off before
# the #!/bin/sh and feed the rest to /bin/sh
#
part=3
file=archive.zip
sed -e '/^BEGIN/d' -e '/^END/d' << \End_of_Section > $file.uue.$part
BEGIN------------ archive.zip ------------ part 3/3 ---
Encoded data goes here

end
END-------------- archive.zip ------------ part 3/3 ---
End_of_Section
echo $file, part $part extracted.
if [ `echo $file.uue.[0-9]* | wc -w` = 3 ]; then 
cat $file.uue.* | uudecode
if [ $? -gt 0 ]; then
  echo Error encountered when uudecoding pieces...
exit 1
fi
echo $file successfully uudecoded. Removing uuencoded pieces.
rm $file.uue.[0-9]*
fi
exit 



DOS uuencode/uudecode Program Format
section 1 of uuencode 5.22 of file archive.zip
NOTE: blank lines indicate start of encoded data

begin 644 archive.zip
Encoded data goes here

NOTE: blank lines indicate end of encoded data

section 2 of uuencode 5.22 of file archive.zip
NOTE: blank lines indicate start of encoded data

Encoded data goes here

NOTE: blank lines indicate end of encoded data

section 3 of uuencode 5.22 of file archive.zip

NOTE: blank lines indicate start of encoded data

Encoded data goes here

end
NOTE: blank lines indicate end of encoded data



X-File Format
X-File-Name: archive.zip
X-Part: 1
X-Part-Total: 3
BEGIN------------------------cut here------------------------
begin 644 archive.zip
Encoded data goes here

END------------------------cut here--------------------------
X-File-Name: archive.zip
X-Part: 2
X-Part-Total: 3
BEGIN------------------------cut here------------------------
Encoded data goes here

END------------------------cut here--------------------------
X-File-Name: archive.zip
X-Part: 3
X-Part-Total: 3
BEGIN------------------------cut here------------------------
Encoded data goes here

end
END------------------------cut here--------------------------



UUXFER Program Format
archive.zip    section  1/3   UUXFER X.Y
BEGIN----------------------CUT HERE--------------------------
begin 644 archive.zip
Encoded data goes here

END------------------------CUT HERE--------------------------
archive.zip    section  2/3   UUXFER X.Y
BEGIN----------------------CUT HERE--------------------------
Encoded data goes here

END------------------------CUT HERE--------------------------
archive.zip    section  3/3   UUXFER X.Y
BEGIN----------------------CUT HERE--------------------------
Encoded data goes here

end
END------------------------CUT HERE--------------------------



WINCODE Program Format
[ Section: 1/3  File: archive.zip  Encoder: Wincode vX.Y ]
NOTE: blank lines indicate start of encoded data

begin 644 archive.zip
Encoded data goes here

NOTE: blank lines indicate end of encoded data

[ Section: 1/3  File: archive.zip  Encoder: Wincode vX.Y ]
[ Section: 2/3  File: archive.zip  Encoder: Wincode vX.Y ]
NOTE: blank lines indicate start of encoded data

Encoded data goes here

NOTE: blank lines indicate end of encoded data

[ Section: 2/3  File: archive.zip  Encoder: Wincode vX.Y ]
[ Section: 3/3  File: archive.zip  Encoder: Wincode vX.Y ]
NOTE: blank lines indicate start of encoded data

Encoded data goes here

end
NOTE: blank lines indicate end of encoded data

[ Section: 3/3  File: archive.zip  Encoder: Wincode vX.Y ]



If You Encounter Problems
If you encounter problems, check the following areas for more information.    If those 
suggestions don't work, please contact technical support.
What if the Multiple Part UU Format I Use Isn't Supported?
What if the Output File Seems Corrupt?



What if the Multiple Part UU Format I Use Isn't Supported?
If you know that the format of your encoded input file is not one of those supported by 
UUCode, then you must manually put the encoded data portion only of each file part into the
correct order for UUCode to work.    Any e-mail header information must also be stripped out.
Keep only the portions starting with 'begin' and up to and including 'end'. Use any standard 
text editor, such as Windows NOTEPAD or DOS's EDIT, to do this.
If you are not sure what multiple part type is used, try running UUCode anyway and check 
that UUCode reports no errors and check the output file as per the What if the Output File
Seems Corrupt section.    The formats supported by UUCode are described in Encoding 
Header Formats.



What if the Output File Seems Corrupt?
Typically UUCode is used to send binary files containing compressed archives.    Those files 
typically end in extensions of .ZIP, .ARC, .LZH, or .ZOO.    If you find that UUCode reports a 
complete and correct decoding but your archive file has problems (e.g. checksum errors), 
then it is likely that UUCode cannot filter any e-mail header information contained within the 
file or the multiple part format used is not supported by UUCode.
Try manually putting together the encoded file using any ASCII text editor such as Windows 
NOTEPAD or DOS's EDIT.    Then re-run decoding on that file.



Exit
File Menu / Exit Menu Item
General Configuration / Exit When Done En/Decoding
 




